
Complex Analysis (for Physics)

Midterm Exam (with solutions)

Problem 1

Prove that if |z| = 1 then
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= 1 for all complex numbers a, b, (a, b) 6= (0, 0).

Solution 1.1

Using the multiplicative property of the modulus, i.e. |z1z2| = |z1||z2|, and |z| = |z| = 1 and
zz = |z|2 = 1 we have
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Above we used (1) |z| = |z| = 1, (2) |z1| |z2| = |z1z2|, (3) zz = |z|2 = 1, (4) z1 z2 = z1z2
and z1 + z2 = z1 + z2, (5) |z1/z2| = |z1|/|z2|, (6) |z1| = |z1|

Solution 1.2

We can check if we have |bz + a| = |az + b|.
We start with |bz + a|2.

|bz + a|2 = (bz + a)(bz + a)

= (bz + a)(bz + a)

= bbzz + bza+ bza+ aa

= |bz|2 + |a|2 + bza+ bza

= |b|2|z|2 + |a|2 + bza+ bza.

Similarly, we can look at |az + b|2.

|az + b|2 = (az + b)(az + b)

= (az + b)(az + b)

= aazz + azb+ azb+ bb

= |az|2 + |b|2 + azb+ azb

= |a|2|z|2 + |b|2 + azb+ azb.

Note that if |z| = 1, then |z|2 = 1. This means that if |z| = 1, then |bz + a|2 = |az + b|2.
Since moduli are always non-negative, we have |bz + a| = |az + b|.
Note that we should have a 6= −b/z in order for the modulus of |az + b| to not be zero. This
excludes a few more points than just (a, b) = (0, 0).

Solution 1.3

An other way to solve this, is by using z = x + yi with x, y ∈ R, and writing a = c + di,
b = e + fi, with c, d, e, f ∈ R. With this you can use |z|2 = x2 + y2. All the steps are
equivalent to steps above.

Page 1 of 5



Problem 2

Find all complex number solutions of the equation z2 + |z| = 0. Write your final answer in
algebraic form.

Solution 2.1

Writing z in exponential form, i.e. z = reiθ with r = |z| ≥ 0 and θ = Arg(z) ∈ [−π, π),
turns the equation z2 + |z| into e2iθr2 + r = 0. The left-hand side can be factored as

r(e2iθr + 1) = 0 ⇐⇒ r = 0 or re2iθ = −1.

In the former case, we have z = 0eiθ = 0 whereas the latter equation is satisfied if and only
if r = 1 and 2θ = πk for k ∈ Z, which means θ = π/2k, which gives two solutions z = ±i.
Hence the equation z2 + |z| = 0 has three complex number solutions: z ∈ {0,−i, i}.

Solution 2.2

Rewriting the equation as z2 = −|z| and taking the modulus of both sides result in

|z2| = | − |z|| = |z| ⇐⇒ |z2| − |z| = 0 ⇐⇒ |z|(|z| − 1) = 0.

Thus |z| = 0 (i.e. z = 0) or |z| = 1 (i.e. z lies on the unit circle). Either way |z2| = |z| implies
that the equation can be written as z2 + |z|2 = 0 which may be rewritten as z(z + z) = 0,
which is the case when z = 0 or 2Re(z) = z+ z = 0, that is the case if and only if z is purely
imaginary. The only purely imaginary numbers on the unit circle are ±i. Hence the equation
z2 + |z| = 0 has three complex number solutions: z ∈ {0,−i, i}.

Problem 3

Show that the complex function w = z+
1

z
maps the circles |z| = r (with r > 1) onto ellipses.

What happens when r → 1?

Solution

Fix r > 1 and take z ∈ C such that |z| = r, i.e. z = reiθ = r(cos θ + i sin θ) for some
θ ∈ [−π, π). Then z−1 = r−1(cos θ − i sin θ) and w can be written as follows

w = z +
1

z
= reiθ +

1

r
e−iθ =

(

r +
1

r

)

cos θ + i

(

r −
1

r

)

sin θ.

Introducing the notation a := r + r−1, b := r − r−1 and taking the real and imaginary parts
of the equation above, we get Rew = a cos θ and Imw = b sin θ. Therefore

(Rew)2

a2
+

(Imw)2

b2
= cos2 θ + sin2 θ = 1,

which is the equation of the ellipse centred at the origin with a and b as its semi-major and
semi-minor axes along the x- and y-axis, respectively. Thus w lies on an ellipse. It’s also clear
that different angles θ ∈ [−π, π) result in different pairs (cos θ, sin θ), so w as a mapping from
the xy-plane to the uv-plane gives a one-to-one correspondence between the circle x2+y2 = r2

and the ellipse u2

a2
+ v2

b2
= 1.

We see that lim
r→1+

a = lim
r→1+

(r+r−1) = 1+1 = 2 and lim
r→1+

b = lim
r→1+

(r−r−1) = 1−1 = 0,

i.e. the semi-major axis tends to 2 and the semi-minor axis vanishes. Thus in the limit r → 1,
the ellipse becomes the line segment connecting (−2, 0) and (2, 0) in the uv-plane.
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Problem 4

Consider the complex function f(x+ iy) = (x2 + 2y) + i(x2 + y2) and determine the points
z0 ∈ C at which the derivative f ′(z0) exists.

Solution

Since the function f is defined and continuously differentiable everywhere in the xy-plane,
therefore f is complex differentiable at z0 = x0 + iy0 if and only if the Cauchy-Riemann
equations hold at z0. By computing the first partial derivatives, we get

∂u

∂x
= 2x,

∂v

∂x
= 2x,

∂u

∂y
= 2,

∂v

∂y
= 2y.

Hence the Cauchy-Riemann equations read















∂u

∂x
=

∂v

∂y

∂u

∂y
= −

∂v

∂x

⇐⇒

{

2x = 2y

2 = −2x

The second condition implies that x = −1, which when plugged into the first equation yields
y = −1. Therefore z0 = −1− i is the only point where f ′(z0) exists, f

′(−1− i) = −2(1+ i).

Problem 5

Determine the points at which the complex function g(z) =
1

(1− sin z)2
has no derivative

and compute its derivative where it exists.

Solution

First, we find where the function is not differentiable. The function g(z) =
1

(1− sin z)2
is

an elementary function, because it can be obtained using a finite number of basic operations
+,−,×,÷, ◦, ()−1 and the functions i, z, ez. Therefore it is differentiable at every point where
it can be defined (i.e. on its natural domain). Consequently, it has no derivative at the points
where it is undefined. These are the points where the denominator vanishes, that is when
(1− sin z)2 = 0, i.e. sin z = 1. Solving this equation for z (using for example the exponential
definition of sine) we obtain z = π

2
+ 2kπ, k ∈ Z. Therefore g(z) is not differentiable at

z = π
2
+ 2kπ, k ∈ Z.

Everywhere else we may use the Quotient Rule, and the Chain Rule (or the Power Rule
and Chain Rule) to compute the derivative of g(z). We obtain

g′(z) =
2 cos z

(1− sin z)3
.

Problem 6

Verify that the function v(x, y) = y + ex
2
−y2 sin 2xy is harmonic in C and find a harmonic

conjugate −u(x, y) such that u(0, 0) = 3.
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Solution 6.1

Note that v(x, y) is defined and continuously differentiable (to arbitrary order) everywhere.
Furthermore, note that if z = x+ iy, then

ez
2

= e(x
2+y2)+i(2xy) = ex

2
−y2ei(2xy) = ex

2
−y2(cos 2xy + i sin 2xy).

Therefore
Im(z + ez

2

) = y + ex
2
−y2 sin 2xy = v(x, y).

So v(x, y) is harmonic in C, because it is the imaginary part of the entire function z + ez
2

.
The real part of this function is also harmonic everywhere and takes the following form

Re(z + ez
2

) = x+ ex
2
−y2 cos 2xy.

Since this function assumes the value 1 at z = 0, but we want the real part to evaluate
to 3 at z = 0, we consider the entire function f(z) = 2 + z + ez

2

instead. This leaves
the imaginary part unchanged, i.e. Im f(z) = v(x, y). The real part u(x, y) = Re f(z) =
2 + x+ ex

2
−y2 cos 2xy is still harmonic everywhere, −u(x, y) serves as a harmonic conjugate

to v(x, y) and u(0, 0) = 2 + 0 + e0 cos 0 = 3, indeed.

Solution 6.2

Note that v(x, y) is defined and continuously differentiable (to arbitrary order) everywhere.
To verify that v(x, y) is harmonic in C, it remains to show that it satisfies Laplace’s equation
for any x, y ∈ R. To compute the partial derivatives we will make use of the Product Rule,
the Chain Rule and Basic Derivatives. The first partial derivatives are

∂v

∂x
= 2xex

2
−y2 sin(2xy) + 2yex

2
−y2 cos(2xy),

∂v

∂y
= 1− 2yex

2
−y2 sin(2xy) + 2xex

2
−y2 cos(2xy).

The pure second partial derivatives are

∂2v

∂x2
=2ex

2
−y2 sin(2xy) + 4x2ex

2
−y2 sin(2xy) + 4xyex

2
−y2 cos(2xy)

+ 4xyex
2
−y2 cos(2xy)− 4y2ex

2
−y2 sin(2xy),

∂2v

∂y2
=− 2ex

2
−y2 sin(2xy) + 4y2ex

2
−y2 sin(2xy)− 4xyex

2
−y2 cos(2xy)

− 4xyex
2
−y2 cos(2xy)− 4xyex

2
−y2 sin(2xy).

Clearly, the second order partial derivatives are continuous and

∂2v

∂x2
+

∂2v

∂y2
= 0, for any x, y ∈ R.

Therefore v(x, y) is harmonic in the whole plane. To find its harmonic conjugate we solve the
Cauchy-Riemann equations for u(x, y). Integrating − ∂v

∂x
with respect to y, we get

u(x, y) = −

∫

(2xex
2
−y2 sin(2xy) + 2yex

2
−y2 cos(2xy)) dy = ex

2
−y2 cos(2xy) + h(x).
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Let us now differentiate u(x, y) with respect to x using the Product Rule, Chain Rule, and
Basic Derivatives:

∂u

∂u
= −2xex

2
−y2 cos(2xy) + 2yex

2
−y2 sin(2xy) + h′(x).

Thus to satisfy the Cauchy-Riemann equation ∂u
∂x

= ∂v
∂y
, we need to have

2xex
2
−y2 cos(2xy)− 2yex

2
−y2 sin(2xy) + h′(x) = 1− 2yex

2
−y2 sin(2xy) + 2xex

2
−y2 cos(2xy),

i.e. h′(x) = 1, implying that h(x) = x+ C, where C is an arbitrary real constant. Thus

u(x, y) = ex
2
−y2 cos(2xy) + x+ C.

By applying the initial condition we can find the value of C,

u(0, 0) = e0 cos(0) + 0 + C = 3 ⇒ C = 2.

Hence, the complex conjugate −u(x, y) is given by

u(x, y) = ex
2
−y2 cos(2xy) + x+ 2.
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